Minggu, 13 April 2014

BAB 5 MOMEN ,KEMIRINGAN DAN KURTOSIS



TUGAS BAB 5 MOMEN , KEMIRINGAN ,DAN KURTOSIS
TUGAS KULIAH BAB V
MOMEN KEMIRINGAN DAN KURTOSIS


A.          Momen
             Misal diketahui variabel  X dengan harga X1, X2, X3 . . . .   Xn. Jika A sebuah bilangan tetap dan r = 0, 1, 2, 3,      maka momen di sekitar A disingkat m’rdidefinisikan oleh
Dengan
n = , Xi = tanda kelas interval dan fi = frekuensi yang sesuai dengan Xi.
Dengan menggunakan cara coding, rumusnya:
m’r = , P = Panjang kelas, C = Variabel koding.
Dari m’r harga-harga mr dapat ditentukan berdasarkan hubungan:
m2 = m2’ – (m1’)2
m3 = m3’ – 3m1’ + m2 + 2(m1’)3
m4 = m4’ – 4m1’ + 6 (m1’) m2 – 3 (m1’)

Untuk menghitung momen disekitar rata-rata, untuk data dalam daftar distribusi frekuensi, kita lakukan sebagai berikut:
TABLE  5.1: Table pembantu untuk mencari m
Data
f1
Ci
f1Ci
f1C12
f1C13
f1C14
60 – 63
64 – 67
68 – 71
72 – 75
76 – 70
5
18
42
27
8
-2
-1
0
1
2
-10
-18
0
27
16
20
18
0
37
42
-40
-18
0
27
64
80
18
0
27
128
Jumlah
100

15
97
35
253

Dapat dihitung:
m1 = 
m2 = 
m3 = 
m4 = 
Sehingga dengan menggunakan hubungan di atas:
m2 = m2’ – (m1’)2 = 15,52 – 0,36 = 15,16
m3 = m3’ – 3m1’ m2’ + 2(m1’)3 = 5,28 – 3x0,6x15,52 +2x (0,6) = 21,456
m4 = m4’ – 4m1’ m3’ + 6 (m1’)2 (m2’)...........
=  40,48 – 4x0,6 x 5,28 + 6 x 0,6        2x15,52 – 3x0,42
= 60,9424
Jadi Varian S2 = m2 = 15,16





B.KEMIRINGAN

Kurva distribusi normal, yang tidak terlalu rucing atau tidak terlalu datar. Dinamakanmesokurtik,
kurva yang runcing dinamakan leptokurtik sedangkan yang datar disebut platikurtik.
Salah satu ukuran kurtosis ialah koefisien kurtosis, diberi simbol a4, ditentukan denganrumus a4 = (m4/m)
Kriteria yang didapat dari rumus ini ialah:
a) a4 = 3    Ã         Distribusi normal
b) a4 > 3    Ã         Distribusi yagn leptokurtik
c) a4 < 3     Ã         Distribusi yang platikurtik

Untuk mengetahui apakah distribusi normal atau tidak sering pula dipakai koefisien kurtosis persentil, diberi simbul:
κ = 
SK = rentang semi antar kuartil
K3 = kuartik ketiga
K1 = kuartil kedua
P10 = persentil kesepuluh
P90 = persentil ke 90
Untuk distribusi normal, harga Îº  = 0,263

Untuk contoh di atas telah di dapat m4 = 60,9424, sedangkan m = 15,17 sehingga besarnya koefisien kurtosis a4 = (m4/m) = 60,9424/229,8256 = 0,265, ini kurang dari 3, jadi kurvanya cenderung aman platikurtik.
Contoh: data nilai ujian Fisika dasar dari 80 mahasiswa, akan kita cari koefisien kurtosis persentil besarnya:

κ = 

Dimana K1 dan K3 telah kita hitung; K1 = 81,676 dan K3 = 61,75, adapun datanya telah disusun dalam daftar sebagai berikut:
No
Nilai Ujian
Fi
1
2
3
4
5
6
7
31 – 40
41 – 50
51 – 60
61 – 70
71 – 80
81 – 90
91 – 100
3
5
10
16
24
17
5

Jumlah
80

Dengan menggunakan rumus Pi = b + P dimana P = panjang kelas dapat dihitung P10 dan P90.
P10 akan terletak pada data ke , yaitu pada kelas interval ke 2 sehingga b = 40,5, P = 10; F = 3 f = 5
P10 = 40,5 + 10 = 50,5
P90 akan terletak pada data ke , yaitu pada kelas interval keenam, sehingga b = 80,5, P = 10, F = 8, f = 17
P90 = 80,5 + 10 = 81,32

bab 3 ukuran pemusatan



 BAB 3 UKURAN PEMUSATAN

Salah satu aspek yang paling penting untuk menggambarkan distribusi data adalah nilai pusat data pengamatan (Central Tendency). Setiap pengukuran aritmatika yang ditujukan untuk menggambarkan suatu nilai yang mewakili nilai pusat atau nilai sentral dari suatu gugus data (himpunan pengamatan) dikenal sebagai ukuran pemusatan data (tendensi sentral). Terdapat tiga ukuran pemusatan data yang sering digunakan, yaitu:
  • Mean (Rata-rata hitung/rata-rata aritmetika)
  • Median
  • Mode
1.     Rata – rata (mean)
Rata-rata hitung atau arithmetic mean atau sering disebut dengan istilah mean saja merupakan metode yang paling banyak digunakan untuk menggambarkan ukuran tendensi sentral. Mean dihitung dengan menjumlahkan semua nilai data pengamatan kemudian dibagi dengan banyaknya data.
Contoh 1
Hitunglah nilai rata-rata dari nilai ujian matematika kelas 3 SMU berikut ini: 2; 4; 5; 6; 6; 7; 7; 7; 8; 9
Jawab : 2+ 4+ 5+ 6+ 6+ 7+ 7+ 7+ 8+ 9           = 6,1
                        10

Contoh 2
xi
fi
70
5
69
6
45
3
80
1
56
1
Catatan: Tabel frekuensi pada tabel di atas merupakan tabel frekuensi untuk data tunggal, bukan tabel frekuensi dari data yang sudah dikelompokkan berdasarkan selang/kelas tertentu.
Jawab:
xi
fi
fixi
70
5
350
69
6
414
45
3
135
80
1
80
56
1
56
Jumlah
16
1035

Mean = jumlah fi.xi
           Jumlah fi
Mean = 1035/16 = 64,6

2.    Median
Median dari n pengukuran atau pengamatan x1, x2 ,..., xn adalah nilai pengamatan yang terletak di tengah gugus data setelah data tersebut diurutkan. Apabila banyaknya pengamatan (n) ganjil, median terletak tepat ditengah gugus data, sedangkan bila n genap, median diperoleh dengan cara interpolasi yaitu rata-rata dari dua data yang berada di tengah gugus data.
Berat badan
Frekuensi (fi)
Frekuensi kumulatif (fk)
46 – 50
3
3
51 – 55
2
5
56 – 60
4
9
61 – 65
5
14
66 – 70
6
20
71 – 75
4
24
76 – 80
1
25
81 - 85
1
26
Me = xii +n/2 – fki    p
                Fi

Batas bawah kelas interval (xii) = 60,5
Jumlah data (n) = 26
Frek kumulatif data sebelum kelas me = 9
Frek (fi) = 5
Panjang kelas (p) = 5
Jawab :
Me =60,5 +(26/2 – 9) . 5
                         5
       =60,5 + 4
       =64,5
3.    Modus
adalah data yang paling sering muncul/terjadi. Untuk menentukan modus, pertama susun data dalam urutan meningkat atau sebaliknya, kemudian hitung frekuensinya. Nilai yang frekuensinya paling besar (sering muncul) adalah modus.
Nilai statistik
Frekuensi
51 – 55
5
56 – 60
6
61 – 65
14
66 – 70
27
71 – 75
21
76 – 80
5
81 – 85
3

Mo = b +  p
b( kelas bawah kelas interval dengan frekuensi terbanyak) = 65,5
p ( panjang kelas interval ) = 5
b1( frek trbanyak – frek kelas sebelum mo) = 13
b2( frek terbanyak – frek kelas sesudah mo) = 6
Mo = 65,5 + 13     .  5
                   13+6
       = 65,5 + 13/19 .  5
        = 68,95

Sumber : catatan statistika , smartstat.info