Minggu, 04 Mei 2014

BAB 9 KORELASI DAN REGRESI



 BAB 9:ANALISIS REGRESI DAN ANALISIS KORELASI
Pengertian : Analisis regresi merupakan salah satu analisis yang bertujuan untuk mengetahui pengaruh suatu variabel terhadap variabel lain. Dalam analisis regresi, variabel yang mempengaruhi disebut Independent Variable (variabel bebas) dan variabel yang dipengaruhi disebut Dependent Variable (variabel terikat). Jika dalam persamaan regresi hanya terdapat satu variabel bebas dan satu variabel terikat, maka disebut sebagai persamaan regresi sederhana, sedangkan jika variabel bebasnya lebih dari satu, maka disebut sebagai persamaan regresi berganda.

Analisis Korelasi merupakan suatu analisis untuk mengetahui tingkat keeratan hubungan antara dua variabel. Tingkat hubungan tersebut dapat dibagi menjadi tiga kriteria, yaitu mempunyai hubungan positif, mempunyai hubungan negatif dan tidak mempunyai hubungan.
Analisis Regresi Sederhana : digunakan untuk mengetahui pengaruh dari variabel bebas terhadap variabel terikat atau dengan kata lain untuk mengetahui seberapa jauh perubahan variabel bebas dalam mempengaruhi variabel terikat. Dalam analisis regresi sederhana, pengaruh satu variabel bebas terhadap variabel terikat dapat dibuat persamaan sebagai berikut : Y = a + b X. Keterangan : Y : Variabel terikat (Dependent Variable); X : Variabel bebas (Independent Variable); a : Konstanta; dan b : Koefisien Regresi. Untuk mencari persamaan garis regresi dapat digunakan berbagai pendekatan (rumus), sehingga nilai konstanta (a) dan nilai koefisien regresi (b) dapat dicari dengan metode sebagai berikut :
a = [(ΣY . ΣX2) – (ΣX . ΣXY)] / [(N . ΣX2) – (ΣX)2] atau a = (ΣY/N) – b (ΣX/N)
b = [N(ΣXY) – (ΣX . ΣY)] / [(N . ΣX2) – (ΣX)2]

Contoh :
Berdasarkan hasil pengambilan sampel secara acak tentang pengaruh lamanya belajar (X) terhadap nilai ujian (Y) adalah sebagai berikut :
(nilai ujian)
X (lama belajar)
X 2
XY
40
4
16
160
60
6
36
360
50
7
49
350
70
10
100
700
90
13
169
1.170
ΣY = 310
ΣX = 40
ΣX2 = 370
ΣXY = 2.740
Dengan menggunakan rumus di atas, nilai a dan b akan diperoleh sebagai berikut :
a = [(ΣY . ΣX2) – (ΣX . ΣXY)] / [(N . ΣX2) – (ΣX)2]
a = [(310 . 370) – (40 . 2.740)] / [(5 . 370) – 402] = 20,4

b = [N(ΣXY) – (ΣX . ΣY)] / [(N . ΣX2) – (ΣX)2]
b = [(5 . 2.740) – (40 . 310] / [(5 . 370) – 402] = 5,4

Sehingga persamaan regresi sederhana adalah Y = 20,4 + 5,2 X
Berdasarkan hasil penghitungan dan persamaan regresi sederhana tersebut di atas, maka dapat diketahui bahwa : 1) Lamanya belajar mempunyai pengaruh positif (koefisien regresi (b) = 5,2) terhadap nilai ujian, artinya jika semakin lama dalam belajar maka akan semakin baik
atau tinggi nilai ujiannya; 2) Nilai konstanta adalah sebesar 20,4, artinya jika tidak belajar atau lama belajar sama dengan nol, maka nilai ujian adalah sebesar 20,4 dengan asumsi variabel-variabel lain yang dapat mempengaruhi dianggap tetap.
Analisis Korelasi (r) : digunakan untuk mengukur tinggi redahnya derajat hubungan antar variabel yang diteliti. Tinggi rendahnya derajat keeratan tersebut dapat dilihat dari koefisien korelasinya. Koefisien korelasi yang mendekati angka + 1 berarti terjadi hubungan positif yang erat, bila mendekati angka – 1 berarti terjadi hubungan negatif yang erat. Sedangkan koefisien korelasi mendekati angka 0 (nol) berarti hubungan kedua variabel adalah lemah atau tidak erat. Dengan demikian nilai koefisien korelasi adalah – 1 ≤ r ≤ + 1. Untuk koefisien korelasi sama dengan – 1 atau + 1 berarti hubungan kedua variabel adalah sangat erat atau sangat sempurna dan hal ini sangat jarang terjadi dalam data riil. Untuk mencari nilai koefisen korelasi (r) dapat digunakan rumus sebagai berikut : r = [(N . ΣXY) – (ΣX . ΣY)] / √{[(N . ΣX2) – (ΣX)2] . [(N . ΣY2) – (ΣY)2]}

Contoh :
Sampel yang diambil secara acak dari 5 mahasiswa, didapat data nilai Statistik dan Matematika sebagai berikut :
Sampel
X (statistik)
Y (matematika)
XY
X2
Y2
1
2
3
6
4
9
2
5
4
20
25
16
3
3
4
12
9
16
4
7
8
56
49
64
5
8
9
72
64
81
Jumlah
25
28
166
151
186
r = [(N . ΣXY) – (ΣX . ΣY)] / √{[(N . ΣX2) – (ΣX)2] . [(N . ΣY2) – (ΣY)2]}
r = [(5 . 166) – (25 . 28) / √{[(5 . 151) – (25)2] . [(5 . 186) – (28)2]} = 0,94

Nilai koefisien korelasi sebesar 0,94 atau 94 % menggambarkan bahwa antara nilai statistik dan matematika mempunyai hubungan positif dan hubungannya erat, yaitu jika mahasiswa mempunyai nilai statistiknya baik maka nilai matematikanya juga akan baik dan sebaliknya jika nilai statistik jelek maka nilai matematikanya juga jelek.


Tidak ada komentar:

Posting Komentar